Vol. 7, Issue 1, Jun 2011.



Vitošević Biljana1
1 Faculty for Sport and Physical Education, Leposavić, Serbia


doi: 10.5550/sgia.110701.en.073V
COBISS.BH-ID: 2103320
UDC: 616-085:575.113]:796


Summary   FULL TEXT (.pdf) free of charge

Thanks to the very successful Human Genome Project and the identification of genes involved in genetic disease, we now have the ability to treat many conditions. However, the identification of the genes which code certain phenotype characteristics has opened the way for abuse in the fields of sport and physical exercise. The principles of gene therapy and the ways in which genes are transferred have completely been copied from gene therapy and are now being used to increase the physical abilities of athletes. The genes most frequently used by athletes include: the the ACE gene, the ACTN3 gene, myostatin, the erythropoietin gene, PPAR-delta and the like. The misuse of these genes with the aim of increasing physical abilities has already become part of sport and is extremely difficult to identify, since genes and gene sequences entering the human body are proteins that are already structural and functional parts of the organism. On the other hand, viral vectors as the instruments for gene transfer attack and destroy the human immune system, and the reaction of the human body can be negative, with a danger of insertional mutagenesis and the appearance of oncogenes. Gene therapy might actually be much more useful in treating sports injuries, but even these procedures are still far from clinical practice. There is a fine line between gene therapy and gene doping in athletes. A number of growth factors will enhance repair, but it happen that expression of these factors increase the strength of bones and tendons, so that giving an advantage to competitors. First of all, it is necessary to acquaint athletes as much as possible with the negative consequences of using gene therapy. However victory and glory may be strong achievements, the health of these young people, and respect for fundamental and ethical principles, humanity, and fair play game have a more lasting value and represent the heavier weight on the scales.


Key words: gene transfer, candidate gene, performance enhancement.



Baoutina, A., Alexander, I. E., Rasko, J. E. J., & Emslie, K. R. (2007). Potential use of gene transfer in athletic performance enhancement. Molecular Therapy, 15(10), 1751-1766.

Barton-Davis, E. R., Shoturma, D. I., & Sweeney, H. L. (1999). Contribution on satellite cells to IGF-1 induced hypertrophy of skeletal muscle. Acta Physiologica Scandinavica, 167, 301-305.

Beiter, T., Zimmermann, M., Fragasso, A., Armeanu, S., Lauer, U. M., Bitzer, M., et al. (2008). Establishing a novel single-copy primer - internal intron - spanning PCR procedure for the direct detection of gene doping. Exerc Immunol Rev, 14, 7-85.

Brown N. J., Blais C., Gandhi S. K., & Adam A. (1998). ACE insertion/deletion genotype affects bradykinin metabolism. J Cardiovascul Pharmacol, 32, 373-377.

Brutsaert, T. D. & Parra, E. J. (2009). Nature versus nurture in determining athletic ability. Med Sport Sci. Basel, Karger, 54, 11-27.

Calve, S., Dennis, R. G., Kosnik, P. E., Baar, K., Grosh, K., & Arruda, E. M. (2004). Engineering of functional tendon. Tissue Eng, 10(5-6), 755-761.

Cao, D., Liu, W., Wei, X., Xu, F., Cui, L., & Cao, Y. (2006). In vitro tendon engineering with avian tenocytes and polyglycolic acids, a preliminary report. Tissue Eng, 12(5), 1369-1377.

Caplan, A. I., & Bruder, S. P. (2001). Mesenchymal stem cells: bilding blocks for molecular medici-ne in the 21 st century. Trends Mol Med, 7(6), 259-264.

Cavazzana-Calvo, M., Lagresie, C., Hacein-Bey-Abina, S., & Ficher, A. (2005). Gene therapy for severe combined immunodeficiency. Annu Rev Med, 56, 585-602.

Costa, A., Silva, A.J., Breitenfeld, L., Marques, M. C., Marinho, D., Garrido, N., et al. (2008). ACE genotype and critical velocity in elite swimmers. Archivos de Medicina del Deporte, XXVI (129), 34.

Engert, J. C., Berglund, E. B., & Rosenthal, N. (1996). Proliferation precedes differentiation in IGF-1 stimulated myogenesis. J Cell Biol, 135, 431-440.

Evans, R. M., Barish, G. D., & Wang, Y. X. (2004). PPARs and the complex journey to obesity. Nat Med, 10, 355-361.

Hoffmann, A., & Gross, G. (2009). Innovative strategies for treatment of soft tissue injuries in human and animal athletes. Med Sport Sci, Basel, Karger, 54, 150-165.

Huard, J., Li, J., Peng, H., & Fu, F.H. (2003). Gene therapy and tissue engineering for sports medicine. J Gene Med, 5, 93-108.

Humbel, R. E. (1990). Insulin-like growth factors I and II. Eur J Biochem, 190(3), 445-462.
Jones, A., & Woods, D. R. (2003). Sceletal muscle RAS and exercise performance. Int J Biochem Cell Biol, 35, 855-866.

Karjalainen, J., Kujala, U. M., Stolt, A., Mantysaari, M., Viitasalo, M., Kainulainen, K., et al. (1999). Angiotensinogen gene m235t polymorphism predicts left ventricular hypertrophy in enduran-ce athletes. J Am Coll Cardiol, 34, 494?499.

Landesberg, R., Roy, M., & Glickman, R. S. (2000). Quantification of growth factor levels using simplified method of plateled-rich plasma gel preparation. J Oral Maxillofac Surg, 58, 297-300.

Mills, M., Yang, N., Weinberger, R., Vander Woude, D. L., Beggs, A. H., Eastel, S., et al. (2001). Differential expression of the actin-binding proteins, alpha-actinin-2 and 3 in different species: implications for the evolution of functional redundancy. Hum Mol Genet, 10, 1335-1346.
Minunni, M., Scarano, S., & Mascini, M. (2008). Affinity-based biosensors as promising tools for gene doping detection. Trends Biotechnol, 26, 236-243.

Musaro, A., McCullagh, K., Paul, A., Houghton, L., Dobrowolny, G., Molinaro, M., et al. (2001). Localised IGF-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet, 27, 195-200.

Nazarov, I., Woods, D., Montgomery, H., Shneider, O., Kazakov, V., Tomilin, N., et al. (2001). The angiotensin converting enzyme I/D polymorphism in russion athletes. European Journal of Human Genetics, 9(10), 797-801.

North, K. N., Yang, N., Wattanasirichaigoon, D., Mills, M., Easteal, S., & Beggs, A. H. (1999). A common nonsense mutation results in alpha-actinin-3 deficiency in the general population. Nat Genet, 21, 353–364.

Pufe, T., Petersen, W., Tillman, B., & Mentlein, R. (2001). The angiogenic peptide vascular endothelial growth factor is expressed in foetal and ruptured tendons. Virchows Arch, 439(4), 579–585.

Rankinen, T., Wolphart, B., Simoneau, J., Maier--Lenz, D., Rauramaa, R., Rivera, M. A., et al. (2000). No association between the angiotensin-converting enzyme ID polymorphism and elite endurance athlete status. J Appl Physiol, 88, 1571–1575.

Rattigan, S., Dora, K. A., Tong, A. C., & Clark, M. G. (1996). Perfuzed skeletal muscle contraction and metabolism improved by angiotensin II-mediated vasoconstriction. Am J Physio, 271, E96–E103.

Rieder, M., Taylor, S., Clark, A., & Nickerson, D. (1999). Sequence variation in the human angiotensin converting enzyme. Nature Genetics, 22, 59–62.

Saxena, P. R. (1992). Interaction between the rennin-angiotensin-aldosteron and sympathetic nervous systems. Journal of Cardiovascular Pharmacology, 19, S80–S88.

Service, R.F. (2008). Tissue engineering. Coming soon to a knee near you: cartilage like your very own. Science, 322, 1460–1461.

Sharma, P., & Maffulli, N. (2006). Biology of tendon injury: healing, modeling and remodeling. J Musculoskelet Neuronal Interact, 6, 181–190.Sharma, P., & Maffulli, N. (2008). Tendinopathy and tendon injury: the future. Disability and Rehabilitation, 30(20–22), 1733–1745.

Skuk, D., & Tremblay, J. P. (2008). Implantation of myogenic cells in skeletal muscle. In A. Atala, R. Lanza, J. Thomson, & R. Nerem (Eds.), Principles of Regenerative (pp. 782–793). Amsterdam: Elsevier.

Southwood, L. L., Frisbie, D. D., Kawcak, C. E., & McIwraith, C.W. (2004). Delivery of growth factors using gene therapy to enhance bone healing. Vet Surg, 33, 565–578

Sweeney, H. L. (2004). Gene doping. Sci Am, 21, 63–69.

Taylor, R. R., Mammote, C. D. S., Fallon, K., & Bockxmeer, F. M. (1999). Elite athletes and the gene for angiotensin-converting enzyme. J Appl Physiol, 87, 1035–1037.

Tsianos, G., Sanders, J., Dharait, S., Humphries, S., Grant, S., & Montgomery, H. (2004). The ACE gen polymorphism and elite endurance swimming. European Journal of Applied Physiology, 93(3), 360–362.

Turnpenny, P., & Ellard, S. (2007). Emerys elements of medical genetics (13th ed). Philadelphia: Elsevier Limited.

Vitošević, B. (2011). Biologija razvoja         čoveka  sa            osnovama genetike (Biology of human development with the basics of genetics). Kruševac: Sigraf.

Woods, D. (2009). Angiotensin-converting enzyme, renin-angiotensyn system and human performance. Med Sport Sci, Basel, Karger, vol 54, 72–87.

Yang, N., MacArthur, D. G., Gulbin, J. P., Hahn, A. G., Beggs, A. H., Easteal, S., et al. (2003). ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet, 73, 627–631.