Vol. 16, Issue 1, december 2020.




Goran Pašić1, Goran Grahovac1& Milomir Trivun2
1Faculty of Physical Education and Sports, University of Banja Luka, Bosnia and Herzegovina
2Faculty of Physical Education and Sports, University of East Sarajevo, Bosnia and Herzegovina

UDC: 797.122



Determining body structure in physical culture, sports, but also in sports recreation is one of the ways to check effectiveness of certain training programs and their impact on a percentage of subcutaneous fat and fat-free components. This study was conducted on a sample of 49 kayakers and slalom canoeists (aged 19.9 ± 1.7 years), and the aim was to compare validity of methods for estimating percentage of body fat based on the skinfold measurement method in relation to the bioelectrical impedance method for application in diagnostics within a training process of slalom kayakers and slalom canoeists. The percentage of body fat was determined by methods of determining the percentage of body fat according to Siri (1961), Brozek et al. (1963), Jackson, & Pollock, (1985) and the BIA bioelectrical impedance method. After statistical procedures, correlation analysis revealed a high correlation between the methods: anthropometric methods according to Siri and Brozek, both methods with the Jackson Pollock method, while all three methods have a high level of correlation with the BIA method, while the Wilcoxon test showed that the bioelectrical impedance method had statistically significantly higher values than the method of determining the percentage of body fat according to Siri & Brozek (p <0.001), and significantly lower than the method of determining the percentage of body fat according to Jackson Pollock (p = 0.005). The research showed that in the observed sample of respondents, when it comes to one respondent, a group of respondents, respondents within one sport or an uneven sample of non-athletes, if it is not possible to use some of the more sophisticated BIA methods, a satisfactory method could be the skinfold measurement method

Key words: javelin throw, vortex, students, throwing technique, performance evaluation methods

FULL TEXT (.pdf)



1. Achten, J., & Jeukendrup, A. E. (2004). Optimizing fat oxidation through exercise and diet. Nutrition (Burbank, Los Angeles County, Calif.), 20(7-8), 716-727.[CrossRef]

2. Ackland, T. R., Lohman, T. G., Sundgot-Borgen, J., Maughan, R. J., Meyer, N. L., Stewart, A. D., & Müller, W. (2012). Current status of body composition assessment in sport: review and position statement on behalf of the ad hoc research working group on body composition health and performance, under the auspices of the I.O.C. Medical Commission. Sports medicine (Auckland, N.Z.), 42(3), 227-249.[CrossRef]

3. Baščvan, S., Vučetič, V., & Rodić, S. (2011). Comparison of different methods for assessment body composition. U: S. Simović (Ur.), 2nd international scientific congress"Anthropological aspects of sport, physical education and recreation". 2, str. 165-169. Banja Luka: Faculty of Physical Education and Sport

4. Bielik, V., Messias, L.H., Vajda, M., Lopata, P., Chudý, J., & Manchado-Gobatto, F. (2019). Is the aerobic power a delimitating factor for performance on canoe slalom?: An analysis of Olympic Slovak canoe slalom medalists and non-Olympics since Beijing 2008 to Rio 2016. Journal of Human Sport and Exercise, 14, 876-892.[CrossRef]

5. Bowden, R. G., Lanning, B. A., Doyle, E. I., Johnston, H. M., Nassar, E. I., Slonaker, B., Scanes, G., & Rasmussen, C. (2005). Comparison of body composition measures to dual-energy x-ray absorptiometry. Journal of Exercise Physiology Online, 8(2), 1-9.

6. Brodie, D., Moscrip, V., & Hutcheon, R. (1998). Body composition measurement: a review of hydrodensitometry, anthropometry, and impedance methods. Nutrition (Burbank, Los Angeles County, Calif.), 14(3), 296-310.[CrossRef]

7. Brozek, J., & Kinsey, W.(1960). Age changes in skinfold compressibility. Journal of Gerontology, 15 (1), 45-51.[CrossRef]

8. Brozek, J., Grande, F., & Anderson, J.T.(1963). Densiometric analysis of body composition: revision of some quantitative assumptions. Annals of the New York Academy of Sciences, 110, 113-140.[CrossRef]

9. Burkinshaw, L., Jones, P., & Krupowicz, D. (1973). Observer Error in Skinfold Thickness Measurements. Human Biology, 45(2), 273-279. Retrieved November 6, 2020, from

10. Company, J. & Ball, S. (2010). Body Composition Comparison: Bioelectric Impedance Analysis with Dual-Energy X-Ray Absorptiometry in Adult Athletes, Measurement in Physical Education and Exercise Science, 14(3), 186-201[CrossRef]

11. Ferrari, H. G., Messias, L., Reis, I., Gobatto, C. A., Sousa, F., Serra, C., & Manchado-Gobatto, F. B. (2017). Aerobic Evaluation in Elite Slalom Kayakers Using a Tethered Canoe System: A New Proposal. International journal of sports physiology and performance, 12(7), 864-871.[CrossRef]

12. Fornetti, W. C., Pivarnik, J. M., Foley, J. M., & Fiechtner, J.J.(1999). Reliability and validity of body composition measures in female athletes. Journal of Applied Physiology, (Bethesda, Md.: 1985), 87(3), 1114-1122.[CrossRef]

13. Forsyth, H. L., & Sinning, W. E.(1973). The anthropometric estimation of body density and lean body weight of male athletes. Medicine and science in sports, 5(3), 174-180.[CrossRef]

14. Gollnick P. D. (1985). Metabolism of substrates: energy substrate metabolism during exercise and as modified by training. Federation proceedings, 44(2), 353-357.

15. Hagner-Derengowska, M., Hagner, W., Zubrzycki, I., Krakowiak, H., Słomko, W., Dzierżanowski, M., Rakowski, A., & Wiącek-Zubrzycka, M. (2014). Body structure and composition of canoeists and kayakers: analysis of junior and teenage polish national canoeing team. Biology of sport, 31(4), 323-326.[CrossRef]
PMid:25609891 PMCid:PMC4296839

16. Hamano, S., Ochi, E., Tsuchiya, Y., Muramatsu, E., Suzukawa, K., & Igawa, S. (2015). Relationship between performance test and body composition/physical strength characteristic in sprint canoe and kayak paddlers. Open access journal of sports medicine, 6, 191-199.[CrossRef]
PMid:26150737 PMCid:PMC4480586

17. Himes, J. H., Roche, A. F., & Siervogel, R. M. (1979). Compressibility of skinfolds and the measurement of subcutaneous fatness. The American journal of clinical nutrition, 32(8), 1734-1740.[CrossRef]

18. Jackson, A. S., & Pollock, M. L. (1978). Generalized equations for predicting body density of men. British Journal of Nutrition, 40(3), 497-504.[CrossRef]

19. Jackson, A. S., Pollock, M. L., & Ward, A. (1980). Generalized equations for predicting body density of women. Medicine and Science in Sports and Exercise, 12(3), 175-181.[CrossRef]

20. Jackson, A. S., & Pollock, M. L. (1982). Steps towards the development of generalised equations for predicting body composition of adults. Canadian Journal of Applied Sport Science, 7(3), 189-196.

21. Jackson, A. S., & Pollock, M. L. (1985). Practical Assessment of Body Composition. The Physician and Sportsmedicine.,13(5),76-90.[CrossRef]

22. Jackson, A. S., Pollock, M. L., Graves, J. E., & Mahar, M. T. (1988). Reliability and validity of bioelectrical impedance in determining body composition. Journal of Applied Physiology (Bethesda, Md.:1985), 64(2), 529-534.[CrossRef]

23. Kameyama, O., Shibano, K., Kawakita, H., Ogawa, R., & Kumamoto, M. (1999). Medical check of competitive canoeists. Journal of Orthopaedic Science, 4(4), 243-249.[CrossRef]

24. Keller, B., & Katch, F.I. (1985). Validity of bioelectrical resistive impedanse forestimation of body fat in lean males. Medicine & Science in Sports & Exercise, 17 (2), 272.[CrossRef]

25. Knechtle, B., Knechtle, P., & Rosemann, T. (2011). Upper body skinfold thickness is related to race performance in male Ironman triathletes. International Journal of Sports Medicine, 32(1), 20-27.[CrossRef]

26. Lintsi, M., Kaarma, H., & Kull, I. (2004). Comparison of hand-to-hand bioimpedanse and anthropometry equations versus dual-energy X-ray absorptiometry for the assessment of body fat percentage in 17-18-year-old conscripts. Clinical Physiology and Functional Imaging, 24(2), 85-90.[CrossRef]x

27. Lohman T. G. (1981). Skinfolds and body density and their relation to body fatness: a review. Human Biology, 53(2), 181-225.

28. Lukaski, H. C., Johnson, P. E., Bolonchuk, W. W., & Lykken, G. I. (1985). Assessment of fat-free mass using bioelectrical impedance measurements of the human body. The American journal of clinical nutrition, 41(4), 810-817.[CrossRef]

29. Lundström, P., Borgen, J. S., & McKenzie, D. (2019). The canoe/kayak athlete. In D. McKenzie, & B. Berglund, Handbook of Sports Medicine and Science Canoeing (pp. 40-46). Hoboken, NJ : Wiley-Blackwell.[CrossRef]

30. Macias, N., Alemán-Mateo, H., Esparza-Romero, J., & Valencia, M.E. (2007). Body fat measurement by bioelectrical impedanse and air displacement plethysmography: a cross-validation study to design bioelectrical impedanse equations in Mexican adults. Nutrition Journal, 6, 18.[CrossRef]
PMid:17697388 PMCid:PMC2020472

31. Macdermid, P. W., Osborne, A., & Stannard, S. R. (2019). Mechanical Work and Physiological Responses to Simulated Flat Water Slalom Kayaking. Frontiers in physiology, 10, 260.[CrossRef]
PMid:30949065 PMCid:PMC6436605

32. Malina R. M. (2007). Body composition in athletes: assessment and estimated fatness. Clinics in sports medicine, 26(1), 37-68.[CrossRef]

33. Manchado-Gobatto, F. B., Arnosti Vieira, N., Dalcheco Messias, L. H., Ferrari, H. G., Borin, J. P., de Carvalho Andrade, V., & Terezani, D. R. (2014). Anaerobic threshold and critical velocity parameters determined by specific tests of canoe slalom: Effects of monitored training. Science & Sports, 29(4), pp. e55-e58.[CrossRef]

34. Mayhew, J. L., Clark, B. A., McKeown, B. C., & Montaldi, D. H. (1985). Accuracy of anthropometric equations for estimating body composition in female athletes. The Journal of sports medicine and physical fitness, 25(3), 120-126.
35. Meleski, B. W., Shoup, R. F., & Malina, R. M. (1982). Size, physique, and body composition of competitive female swimmers 11 through 20 years of age. Human biology, 54(3), 609-625.

36. Messias, L. H. D., dos Reis, I. G. M., Ferrari, H. G., & de Barros Manchado-Gobatto, F. (2014). Physiological, psychological and biomechanical parameters applied in canoe slalom training: a review. International Journal of Performance Analysis in Sport, 14(1), 24-41.[CrossRef]

37. Messias, L. H., Ferrari, H. G., Sousa, F. A., Dos Reis, I. G., Serra, C. C., Gobatto, C. A., & Manchado-Gobatto, F. B. (2015). All-out Test in Tethered Canoe System can Determine Anaerobic Parameters of Elite Kayakers. International journal of sports medicine, 36(10), 803-808.[CrossRef]

38. Michailidis, Y., Methenitis, S., & Michailidis, C. (2013). A comparison of arm to leg bioelectrical impedanse and skinfolds in assessing body fat in professional soccer players. Journal of Sport and Human Performance, 1(4):8-13.[CrossRef]

39. Ostojic, S.M. (2006). Estimation of body fat in athletes: skinfolds vs bioelectrical impedanse. Journal of Sports Medicine and Physical Fitness, 46, 442-446.

40. Pollock, M. L., Gettman, L. R., Jackson, A., Ayres, J., Ward, A., & Linnerud, A. C. (1977). Body composition of elite class distance runners. Annals of the New York Academy of Sciences, 301, 361-370.[CrossRef]x

41. Silva, A.M, Fields, D.A., Quitério, A.L, & Sardinha, L.B. (2009). Are Skinfold-Based Models Accurate and Suitable for Assessing Changes in Body Composition in Highly Trained Athletes? Journal of Strength & Conditioning Research, 23(6), 1688-1696.[CrossRef]

42. Sinning, W.E. (1974). Body composition assessment of college wrestlers. Medicine & Science in Sports & Exercise ,6(2), 139-145[CrossRef]

43. Sinning, W.E. (1978). Anthropometric estimation of body density, fat and lean body weight in women gymnast. Medicine & Science in Sports & Exercise, 10(4), 243-249

44. Sinning, W.E., Dolney, D.G., & Little, K.D. (1985). Validity of "generalized" equations for body composition analysis in male athlete. Medicine & Science in Sports & Exercise, 17(1), 124-130.[CrossRef]

45. Sinning, W.E., & Wilson, J.W. (1984). Validity of "generalized" equations for body composition analysis in women athletes. Research Quarterly for Exercise and Sport, 55:2, 153-160.[CrossRef]

46. Siri, W. E. (1961). Body composition from fluid space and density. In J. Brozek & A. Hanschel (Eds.1961), Techniques for measuring body composition (pp. 223-244). Washington, DC: National Academy of Science.

47. Sudarov, N & Fratrić, F. (2010). Dijagnostika treniranosti sportista [Diagnostic of athletes]. Novi Sad, RS: Pokrajinski zavod za sport.

48. Utter, A.C., Scott, J.R, Oppliger, R.A., Visich, P.S., Goss, F.L., Marks, B.L., Nieman, D.C., & Smith, B.W. (2001). A comparison of leg-to-leg bioelectrical impedanse and skinfolds in assessing body fat in collegiate wrestlers. Journal of Strength and Conditioning Research,  15(2), 157-160.<0157:ACOLTL>2.0.CO;2[CrossRef][CrossRef]

49. Zamparo, P., Tomadini, S., Didone, F., Grazzina, F., Rejc, E., & Capelli, C. (2006). Bioenergetics of a slalom kayak (K1) competition. International journal of sports medicine, 27(07), 546-552.[CrossRef]

50. Wang, J. G., Zhang, Y., Chen, H. E., Li, Y., Cheng, X. G., Xu, L., Guo, Z., Zhao, X. S., Sato, T., Cao, Q. Y., Chen, K. M., & Li, B. (2013). Comparison of two bioelectrical impedance analysis devices with dual energy X-ray absorptiometry and magnetic resonance imaging in the estimation of body composition. Journal of strength and conditioning research, 27(1), 236-243.[CrossRef]

51. Wells, J. C., & Fewtrell, M. S. (2006). Measuring body composition. Archives of disease in childhood, 91(7), 612-617.[CrossRef]
PMid:16790722 PMCid:PMC2082845

To cite this article:
Pašić, G., Grahovac, G., & Trivun, M. (2020). Comparasion of methods for determining procentage of body fat on a sample of kayakers and canoeist-in slalom. Sportlogia 16 (1), 91-109.


Received: 07.11.2020.
Approved: 12.11.2020.

Goran Pašić, Ph. D.
Docent at the Faculty of Physical Education and Sports, University of Banja Luka
Bulevar vojvode Petra Bojovica 1 A, 78 000 Banja Luka, Bosnia and Herzegovina
Telephone: 00387 65 932 714.