SportLogia
Vol. 10, Issue 2, December 2014.

 

Role of Central Fatigue in Resistance and Endurance
Exercises: An Emphasis on Mechanisms and Potential Sites


Kimiya Sadri1, Mostafa Khani2, and Iraj Sadri3
1Education office of Tabriz, Tabriz, Iran
2Department of Physical Education and Sports Sciences, Ahar Branch, Islamic Azad University, Ahar, Iran
3Department of Physical Education and Sports Sciences, Shabestar Branch, Islamic Azad University, Shabestar, Iran


OWERVIEV PAPER
doi: 10.5550/sgia.141002.en.003S                                                                                                                                            
UDK: 786.012.116

 

Summary

FULL TEXT (.pdf)


An exercise-induced reduction in maximal force production, or the inability to continue an activity with enough force, is defined as fatigue. Although the etiology of fatigue is complex, it can be divided into two distinct components: central and peripheral. Central fatigue is the progressive exercise-induced loss of the voluntary activation, or decrease in the neural stimulation, of the muscle, thereby reducing maximal force production. Considering the different mechanisms of strength and endurance activities as well as previous research, the authors suggest that there is peripheral fatigue in both kinds of activities. However, the mechanisms of fatigue and the rate of perceived exertion are distinct (mentally, endurance exercise is more difficult). An analysis of fatigue kinetics shows that peripheral fatigue occurs initially, and the central nervous system tries to prevent the disorder via output force through the perceptions of the metabolic condition of the muscle and the activation of additional motor units. Once peripheral fatigue surpasses a certain amount, the central nervous system reduces the number of activated motor units to prevent serious disorders in homeostasis and muscle damage, and protects the central governor. Still, in important and critical situations such as the final stages of running a marathon (when the last flight of runners is observed) and fight-or-flight situations in which someone faces a worse outcome if a task is abandoned, humans can choose one of worse or the worst alternatives to write their final destiny.


Key words:central fatigue, maximum voluntary contraction, neurotransmitters, temperature, perceived exertion.


References


Abbiss, C. R., & Laursen, P. B. (2005). Models to Explain Fatigue during Prolonged Endurance Cycling. Sports Med, 35(10), 865−898. doi: 10.2165/00007256-200535100-00004
Adreani, C. M., Hill, J. M., & Kaufman, M. P. (1997). Responses of group III and IV muscle afferents to dynamic exercise. Journal of Applied Physiology, 82(6), 1811−1817. PMid: 9173945
Ahtiainen, J. P., & Hakkinen, K. (2009). Strength Athletes Are Capable to Produce Greater Muscle Activation and Neural Fatigue During High-Intensity Resistance Exercise Than Nonathletes. Journal of Strength & Conditioning Research, 23(4), 1129−1134. doi: 10.1519/JSC.0b013e3181aa1b72; PMid: 19528869
Amannn, M., & Dempsey, J. A. (2008). Locomotor muscle fatigue modifies central motor drive in healthy humans and imposes a limitation to exercise performance. The Journal of Physiology, 586(Pt 1), 161−173.
doi: 10.1113/jphysiol.2007.141838; PMid: 17962334; PMCid: PMC2375542
Amann, M., Eldridge, M., Lovering, A., Stickland, M., Pegelow, D., & Dempsey, J. (2006). Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue. The Journal of Physiology, 575(Pt 3), 937−952. doi: 10.1113/jphysiol.2006.113936; PMid: 16793898; PMCid: PMC1995675
Amann, M., Romer, L. M., Subudgi, A. W., Pegelow, D. F., & Dempsey, J. A. (2007). Severity of arterial hypoxaemia affects the relative contributions of peripheral muscle fatigue to exercise performance in healthy humans. The Journal of Physiology, 581, 389−403. doi: 10.1113/jphysiol.2007.129700; PMid: 17317739; PMCid: PMC2075206
Amann, M., & Secher, N. H. (2010). Point: Afferent feedback from fatigued locomotor muscles is an important determinant of endurance exercise performance. Journal of Applied Physiology, 108(2), 452−454.
doi: 10.1152/japplphysiol.01386.2009; doi: 10.1152/japplphysiol.00976.2009; PMid: 19729588
Babault, N., Desbrosses, K., Fabbre, M. S., Michaut, A., & Pousson, M. (2006). Neuromuscular fatigue development during maximal concentric and isometric knee extensions. Journal of Applied Physiology, 100(3), 780−785.
doi: 10.1152/japplphysiol.00737.2005; PMid: 16282433
Bailey, S. P., Davis, J. M., & Ahlborn, E. N. (1993). Neuroendocrine and substrate responses to altered brain 5-HT activity during prolonged exercise to fatigue. Journal of Applied Physiology, 74(6), 3006−3012. PMid: 8366000
Berchicci, M., Menotti, F., Macaluso, A., & Dirusso, F. (2013). The neurophysiology of central and peripheral fatigue during sub-maximal lowerlimb isometric contractions. Frontiersin Human Neuroscience, 7, 1−10.
doi: 10.3389/fnhum.2013.00135; PMid: 23596408; PMCid: PMC3625743
Bergström, J., Hermansen, L., Hultman, E., & Saltin, B. (1967). Diet, muscle glycogen and physical performance. Acta Physiologica Scandinavica, 71(2-3), 140−150. doi: 10.1111/j.1748-1716.1967.tb03720.x; PMid: 5584523
Borg, G., Edström, C. G., Linderholm, H., & Marklund, G. (1972). Changes in physical performance induced by amphetamine and amobarbital. Psychopharmacologia, 26(1), 10−18. doi: 10.1007/BF00421914
Boukant, J. (1974). The effect of firing rate on preoptic neuronal thermosensitivity. The Journal of Physiology, 240(1), 661−669.
Brown, S., Gisolfi, C., & Mora, F. (1982). Temperature regulation and dopaminergic systems in the brain: does the substantia nigra play a role? Brain Res, 234, 275−286. doi: 10.1016/0006-8993(82)90868-X
Bruck, K., & Olschewski, H. (1987). Body temperature related factors diminishing the drive to exercise. Canadian journal of physiology and pharmacology, 65(6), 1274−1280. doi: 10.1139/y87-203
Byrne, C., Lee, J., Chew, S. A. N., Lim, C. L., & Tan, E. (2006). Continuous thermoregulatory responses to mass-participation distance running in heat. Medicine and Science in Sports and Exercise, 38(3), 803−810.
doi: 10.1249/01.mss.0000218134.74238.6a; PMid: 16672830
Cheung, S. S. (2007). Hyperthermia and voluntary exhaustion: integrating models and future challenges. Applied Physiology, Nutrition, and Metabolism, 32(4), 808−817. doi: 10.1139/H07-043; PMid: 17622299
Cheung, S. S., & Mclellan, T. M. (1998). Heat acclimation, aerobic fitness, and hydration effects on tolerance during uncompensable heat stress. Journal of Applied Physiology, 84(5), 1731−1739.
doi: 10.1007/s004210050386

Clark, W. G., & Lipton, J. (1986). Changes in body temperature after administration of adrenergic and serotonergic agents and related drugs including antidepressants: II. Neuroscience & Biobehavioral Reviews, 10(2), 153−220.
doi: 10.1016/0149-7634(86)90025-4
Crewe, H., Tucker, R., & Noakes, T. 2008. The rate of increase in rating of perceived exertion predicts the duration of exercise to fatigue at a fixed power output in different environmental conditions. Eur J Appl Physiol Occup Physiol, 103, 569−577. doi: 10.1007/s00421-008-0741-7; PMid: 18461352
Davis, J., Bailey, S., Jackson, D., Strasner, A., & Morehouse, S. (1993). 438 Effects of A Serotonin (5-Ht) Agonist During Prolonged Exercise to Fatigue in Humans. Medicine & Science in Sports & Exercise, 25(5), S78.
doi: 10.1249/00005768-199305001-00440
Davis, M. P., & Walsh, D. (2010). Mechanisms of Fatigue. J Support Oncol, 8(4), 164−174. PMid: 20822034
Decorte, N., Lafaix, P. A., Millet, G. Y., Wuyam, B., & Verges, S. (2012). Central and peripheral fatigue kinetics during exhaustive constant-load cycling. Scand J Med Sci Sports, 22(3), 381−391.
doi: 10.1111/j.1600-0838.2010.01167.x; PMid: 20807390
Desschenes, M. R., Maresh, C. M., & Kraemer, W. J. (1994). The Neuromuscular Junction: Structure function, and its role in the Excitation of Muscle. The Journal of Strength and Conditioning Research, 8(2), 103−109.
doi: 10.1519/00124278-199405000-00008;
doi: 10.1519/1533-4287 (1994)008<0103:TNJSFA>2.3.CO;2
Dobkin, B. 2008. Fatigue versus activity-dependent fatigability in patients with central or peripheral motor impairments. Neurorehabil Neural Repair, 22(2), 105−110. doi: 10.1177/1545968308315046; PMid: 18285599; PMCid: PMC4160309
Duhamel, T. A., Green, H. J., Sandiford, S. D., Perco, J. G., & Ouyang, J. (2004). Effects of progressive exercise and hypoxia on human muscle sarcoplasmic reticulum function. Journal of Applied Physiology, 97, 188−196.
doi: 10.1152/japplphysiol.00954.2003; doi: 10.1152/japplphysiol.00958.2003; PMid: 15064300
Fernstrom, J., & Fernstrom, M. (2006). Exercise, serum free tryptophan, and central fatigue. J Nutr, 136(2), 553S–559S. PMid: 16424146
Foley, T., & Fleshner, M. (2008). Neuroplasticity of dopamine circuits after exercise: implications for central fatigue. Neuromolecular Med, 10(2), 67−80. doi: 10.1007/s12017-008-8032-3; PMid: 18274707
Gadnon, P., Saey, D., Vivodtzev, I., Laviolette, L., Mainguy, V., Milot, J., ... Maltais, F. (2009). Impact of preinduced quadriceps fatigue on exercise response in chronic obstructive pulmonary disease and healthy subjects. Journal of Applied Physiology, 107, 832−840. doi: 10.1152/japplphysiol.91546.2008; PMid: 19574500
Galloway, S., & Maughan, R. J. (1997). Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Medicine and Science in Sports and Exercise, 29(9), 1240−1249.
doi: 10.1097/00005768-199709000-00018
Gandevia, S. 2001. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev, 81(4), 1725−1789. PMid: 11581501
Georgiades, E., Beham, W., Kilduff, L., Hadjicharalambous, M., Mackie, E., Wilson, J., ... Pitsiladis, Y. (2003). Chronic fatigue syndrome: new evidence for a central fatigue disorder. Clinical Sciences, 105(2), 213−218.
doi: 10.1042/CS20020354; PMid: 12708966
Gibson, S. C., Lambert, M., & Noakes, T. (2001). Neural control of force output during maximal and submaximal exercise. Sports Med, 31(9), 637−650. doi: 10.2165/00007256-200131090-00001
González-Alonso, J., & Calbet, J. A. (2003). Reductions in systemic and skeletal muscle blood flow and oxygen delivery limit maximal aerobic capacity in humans. Circulation, 107(6), 824−830.
doi: 10.1161/01.CIR.0000049746.29175.3F

González-Alonso, J., Teller, C., Andersen, S. L., Jensen, F. B., Hylding, T., & Nikelsen, B. (1999). Influence of body temperature on the development of fatigue during prolonged exercise in the heat. Journal of Applied Physiology, 86, 1032−1039. PMid: 10066720
Hargreaves, M., & Febbraio, M. (1998). Limits to exercise performance in the heat. International journal of sports medicine, 19(Suppl. 2), S115–S116. doi: 10.1055/s-2007-971973; PMid: 9694414
Hasegawa, H., Piacentini, M., Sarre, S., Michotte, Y., Ishiwata, T., & Meeusen, R. (2008). Influence of brain catecholamines on the development of fatigue in exercising rats in the heat. J Physiol, 586(Pt 1), 141−149.
doi: 10.1113/jphysiol.2007.142190; PMid: 17947314; PMCid: PMC2375558
Heyes, M., Garnett, E., & Coates, G. (1985). Central dopaminergic activity influences rats ability to exercise. Life sciences, 36(7), 671−677. doi: 10.1016/0024-3205(85)90172-9
Kaufman, M. P., & Forster, H. V. (1996). Reflexes controlling circulatory,ventilatory and airway responses to exercise. In L. Rowell and J. T. Shepherd (Eds.), Handbook of Physiology, section 12, Exercise: Regulation and Integration of Multiple Systems (pp. 381–447). Oxford, NY: University Press.
Kay, D., & Marino, F. (2000). Fluid ingestion and exercise hyperthermia: implications for performance, thermoregulation, metabolism and the development of fatigue. J Sports Sci Med, 18(2), 71−82.
Kent-Braun, J. (1999). Central and peripheral contributions to muscle fatigue in humans during sustained maximal effort. Eur J Appl Physiol Occup Physiol, 80(1), 57−63. doi: 10.1007/s004210050558; PMid: 10367724
Kilpatrick, Z. P. (2010). Spatially structured waves and oscillations in neuronal networks with synaptic depression and adaptation. Unpublish doctoral thesis, University of Utah.
Leite, L. H. R., Rodrigues, A. G., Soares, D. D., Marubayashi, U., & Coimbra, C. N. C. (2010). Central Fatigue Induced by Losartan Involves Brain Serotonin and Dopamine Content. Medicine & Science in Sports & Exercise.
doi: 10.1249/MSS.0b013e3181d03d36; PMid: 20068491
Lepers, R., Millet, G., & Maffiuletti, N. (2001). Effect of cycling cadence on contractile and neural properties of knee extensors. Med Sci Sports Exerc, 33(11), 1882−1888. doi: 10.1097/00005768-200111000-00013
Light, A. R., Hughen, R. W., Zhang, J., Rainier, J., Liu, Z., & Lee, J. (2008). Dorsal root ganglion neurons innervating skeletal muscle respond to physiological combinations of protons, ATP, and lactate mediated by ASIC, P2X, and TRPV1. Journal of neurophysiology, 100, 1184−1201. doi: 10.1152/jn.01344.2007; PMid: 18509077
Marcora, S. M., Staiano, W., & Manning, V. (2009). Mental fatigue impairs physical performance in humans. J Appl Physiol, 106(3), 857−864. doi: 10.1152/japplphysiol.91324.2008; PMid: 19131473
Marino, F. E. 2004. Anticipatory regulation and avoidance of catastrophe during exercise-induced hyperthermia. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 139(4), 561−569.
doi: 10.1016/j.cbpc.2004.09.010; PMid: 15581788
Meeusen, R., & De Meirleir, K. (1995). Exercise and brain neurotransmission. Sports Medicine, 20(3), 160−188.
doi: 10.2165/00007256-199520030-00004
Meeusen, R., & Roelands, B. (2010). Central fatigue and neurotransmitters, can thermoregulation be manipulated? Scandinavian journal of medicine & science in sports, 20(3), 19−28. doi: 10.1111/j.1600-0838.2010.01205.x; PMid: 21029187
Meeusen, R., Watson, P., Hasegawa, H., Roelands, B., & Piacentini, M. (2007). Brain neurotransmitters in fatigue and overtraining. Appl Physiol Nutr Metab, 32(5), 857−864. doi: 10.1139/H07-080; PMid: 18059610
Millet, G. Y. (2011). Can neuromuscular fatigue explain running strategies and performance in ultra-marathons? Sports Medicine, 41(6), 489−506. doi: 10.2165/11588760-000000000-00000; PMid: 21615190
Morrison, S., Sleivert, G. G., & Cheung, S. S. (2004). Passive hyperthermia reduces voluntary activation and isometric force production. European journal of applied physiology, 91(5-6), 729−736.
doi: 10.1007/s00421-004-1063-z
; PMid: 15015001
Myers, R., & Yaksh, T. (1968). Feeding and temperature responses in the unrestrained rat after injections of cholinergic and aminergic substances into the cerebral ventricles. Physiology & Behavior, 3, 917−928.
doi: 10.1016/0031-9384(68)90178-9
Nakayama, T., Eisenman, J., & Hardy, J. (1961). Single unit activity of anterior hypothalamus during local heating. Science, 134(3478), 560−561. doi: 10.1126/science.134.3478.560; PMid: 13727681
Newsholme, E. A., Acworth, I. N., & Blomstrand, E. (1987). Amino acids, brain neurotransmitters and a functional link between muscle and brain that is important in sustained exercise. In G.Benzi (Ed.), Advances in Biochemistry (pp. 127–138). Glasgow, United Kingdom: John Libbey Eurotext. Ng, Q. Y., Lee, K. W., Byrne, C., Ho, T. F., & Lim, C. L. (2008). Plasma endotoxin and immune responses during a 21-km road race under a warm and humid environment. Annals-Academy of Medicine Singapore, 37(4), 307−314.
Nielsen, B., Hales, J., Strange, S., Christensen, N. J., Warberg, J. & Saltin, B. (1993). Human circulatory and thermoregulatory adaptations with heat acclimation and exercise in a hot, dry environment. The Journal of Physiology, 460, 467−485. doi: 10.1113/jphysiol.1993.sp019482
Noakes, T. (2000). Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance. Scandinavian journal of medicine & science in sports, 10(3), 123−145. doi: 10.1034/j.1600-0838.
2000.010003123.x

Noakes, T. D., Gibson, A. S. C., & Lambert, E. V. (2005). From catastrophe to complexity: a novel model of model of integrative central neural regulation of effort and fatigue during exercise in humans: summary and conclusions. Br J Sports Med, 39(4), 120−124. doi: 10.1136/bjsm.2003.010330; PMid: 15665213; PMCid: PMC1725112
Nybo, L., & Secher, N. H. (2004). Cerebral perturbations provoked by prolonged exercise. Progress in neurobiology, 72(4), 223−261. doi: 10.1016/j.pneurobio.2004.03.005; PMid: 15142684
Ohta, M., Hirai, N., Ono, Y., Ohara, M., Saito, S., Horiguchi, S., ... Andou, T. (2005). Clinical biochemical evaluation of central fatigue with 24-hour continuous exercise. Rinsho byori. The Japanese journal of clinical pathology, 53(9), 802−809.
Pannier, J., Bouckaert, J., & Lefebvre, R. (1995). The antiserotonin agent pizotifen does not increase endurance performance in humans. European journal of applied physiology and occupational physiology, 72(1-2), 175−178.
doi: 10.1007/BF00964134
Parise, G., Bosman, M. J., Boecker, D. R., Barry, M. J., & Tarnopolsky, M. A. (2001). Selective serotonin reuptake inhibitors: their effect on high-intensity exercise performance. Archives of physical medicine and rehabilitation, 82(7), 867−871. doi: 10.1053/apmr.2001.23275; PMid: 11441370
Parkin, J., Carey, M., Zhao, S., & Febbraio, M. (1999). Effect of ambient temperature on human skeletal muscle metabolism during fatiguing submaximal exercise. Journal of Applied Physiology, 86(3), 902−908. PMid: 10066703
Periard, J. D., Caillaud, C., & Thompson, M. W. (2011). Central and peripheral fatigue during passive and exercise-induced hyperthermia. Med Sci Sports Exerc, 43(9), 1657−1665. doi: 10.1249/MSS.0b013e3182148a9a; PMid: 21364487
Piacentini, M. F., Meeusen, R., Buyse, L., De Schutter, G., Kempenaers, F., Van Nijvel, J., & De Meirleir, K. (2002). No effect of a noradrenergic reuptake inhibitor on performance in trained cyclists. Medicine and Science in Sports and Exercise, 34, 1189−1193. doi: 10.1097/00005768-200207000-00021; PMid: 12131261
Place, N., Lepers, R., Deley, G., & Millet, G. (2004). Time course of neuromuscular alterations during a prolonged running exercise. Med Sci Sports Exerc, 36(8), 1347−1356. doi: 10.1249/01.MSS.0000135786.22996.77
Quan, N., Xin, L., & Blatteis, C. M. (1991). Microdialysis of norepinephrine into preoptic area of guinea pigs: characteristics of hypothermic effect. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 261(2 30-2), R378−R385.
Quan, N., Xin, L., Ungar, A., & Blatteis, C. (1992). Preoptic norepinephrine-induced hypothermia is mediated by alpha 2-adrenoceptors. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 262(3 31-3), R407−R411.
Robbins, D. W., Goodale, T. L., Docherty, D., Behm, D. G., & Tran, Q. T. (2010). The Effects of Load and Training Pattern on Acute Neuromuscular Responses in the Upper Body. Journal of Strength & Conditioning Research, 24(11), 2996−3007. doi: 10.1519/JSC.0b013e3181f67474; PMid: 20975369
Roelands, B., Goekint, M., Buyse, L., Pauwels, F., De Schutter, G., Piacentini, F., ... Meeusen, R. (2009). Time trial performance in normal and high ambient temperature: is there a role for 5-HT? European journal of applied physiology, 107(1), 119−126. doi: 10.1007/s00421-009-1109-3; PMid: 19533165
Roelands, B., Goekint, M., Heyman, E., Piacentini, M. F., Watson, P., Hasegawa, ... Meeusen, R. (2008). Acute norepinephrine reuptake inhibition decreases performance in normal and high ambient temperature. Journal of Applied Physiology, 105(1), 206−212. doi: 10.1152/japplphysiol.90509.2008; PMid: 18499777
Romanowski, W., & Grabiec, S. (1974). The role of serotonin in the mechanism of central fatigue. Acta Physiol Pol., 25(2), 127−134, PMid: 4830711
Ross, E., Goodall, S., Stevens, A., & Harris, I. (2010). Time course of neuromuscular changes during running in well-trained subjects. Med Sci Sports Exerc, 42(6), 1184−1190. PMid: 19997016
Ross, E. Z., Middleton, N., Shave, R., George, K., & Nowicky, A. (2007). Corticomotor excitability contributes to neuromuscular fatigue following marathon running in man. Exp Physiol, 92(2), 417−426.
doi: 10.1113/expphysiol.2006.035972; PMid: 17099060
Rowell, L., Marx, H., Bruce, R., Conn, R., & Kusumi, F. (1966). Reductions in cardiac output, central blood volume, and stroke volume with thermal stress in normal men during exercise. Journal of Clinical Investigation, 45(11), 1801−1816 doi: 10.1172/JCI105484; PMid: 5926447; PMCid: PMC292862.
Schule, C., Baghai, T., Schmidbauer, S., Bidlingmaier, M., Strasburger, C. J., & Laakmann, G. (2004). Reboxetine acutely stimulates cortisol, ACTH, growth hormone and prolactin secretion in healthy male subjects. Psychoneuroendocrinology, 29(2), 185−200. doi: 10.1016/S0306-4530(03)00022-2
Scott, I., & Boulant, J. (1984). Dopamine effects on thermosensitive neurons in hypothalamic tissue slices. Brain Res, 306(1-2), 157−163. doi: 10.1016/0006-8993(84)90364-0
Shephard, R. J. (2009). Is it Time to Retire the ‘Central Governor’? Sports Medicine, 39(9), 709−721.
doi: 10.2165/11315130-000000000-00000; PMid: 19691362
Simons-Weidenmaier, N. S., Weber, M., Plappert, C. F., Pilz, P. K. D., & Schmid, S. (2006). Synaptic depression and short-term habituation are located in the sensory part of the mammalian startle pathway. BMC Neuroscience, 7(1), 38. doi: 10.1186/1471-2202-7-38; PMid: 16684348; PMCid: PMC1479352
Struder, H., & Weicker, H. (2001). Physiology and pathophysiology of the serotonergic system and its implications on mental and physical performance. Part I. International journal of sports medicine, 22(7), 467−481.
doi: 10.1055/s-2001-17605; doi: 10.1055/s-2001-17606
Szabo, S. T., & Blier, P. (2001). Functional and pharmacological characterization of the modulatory role of serotonin on the firing activity of locus coeruleus norepinephrine neurons. Brain Res, 922(1), 9−20.
doi: 10.1016/S0006-8993(01)03121-3
Taylor, J., Todd, G., & Gandevia, S. (2006). Evidence for a supraspinal contribution to human muscle fatigue. Clin Exp Pharmacol Physiol, 33(4), 400−405. doi: 10.1111/j.1440- 1681.2006.04363.x; PMid: 16620309
Taylor, J., & Gandevia, S. (2008). A comparison of central aspects of fatigue in submaximal and maximal voluntary contractions. J Appl Physiol, 104(2), 542−550. doi: 10.1152/japplphysiol.01053.2007; PMid: 18032577
Tucker, R., Rauch, L., Harley, Y. X., & Noakes, T. D. (2004). Impaired exercise performance in the heat is associated with an anticipatory reduction in skeletal muscle recruitment. Pflügers Archiv, 448(4), 422−430.
doi: 10.1007/s00424-004-1267-4; PMid: 15138825
Walters, T., Rzyn, K., Tate, L., & Mason, P. (2000). Exercise in the heat is limited by a critical internal temperature. Journal of Applied Physiology, 89(2), 799−806. PMid: 10926668
Watanabe, T., Morimoto, A., & Murakami, N. (1986). Effect of amine on temperature-responsive neuron in slice preparation of rat brain stem. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 250, R553−R559.
Watson, P., Hasagawa, H., Roelands, B., Piacentini, M. F., Looverie, R., & Meeusen, R. (2005). Acute dopamine/noradrenaline reuptake inhibition enhances human exercise performance in warm, but not temperate conditions. The Journal of Physiology, 565(3), 873−883. doi: 10.1113/jphysiol.2004.079202; PMid: 15831540; PMCid: PMC1464564
Wilson, M., & Deschenes, M. (2005). The neuromuscular junction: anatomical features and adaptations to various forms of increased, or decreased neuromuscular activity. The international journal of neuroscience, 115(6), 803−828. doi: 10.1080/00207450590882172; PMid: 16019575

Wyndham, C., Rogers, G., Benade, A., & Strydom, N. (1971). Physiological effects of the amphetamines during exercise. S Afr Med J, 45(10), 247–252. PMid: 5573329.