Vol. 10, Issue 2, December 2014.



Naoki Sakakibara1, Sohee Shin1, Tsuneo Watanabe1, and Toshio Matsuoka1
1Department of Sports Medicine and Sports Science, Gifu University Schools of Medicine, Japan

doi: 10.5550/sgia.141002.en.005S
UDK: 796.88:616.718.1



FULL TEXT (.pdf)

The deadlift exposes the spine to extreme loads and requires adequate lumbopelvic (core) stability. Deadlift performance may be influenced by the neuromuscular control of the trunk. In this study, we aimed to compare the transversus abdominis contractile rates in an elite powerlifter with those of a control group during deadlift and estimate the relationships between core stability and deadlift performance. In the present controlled laboratory study, 16 powerlifters [8 male national-level powerlifters and 8 male regional-level powerlifters (control group)] were tested for changes in transversus abdominis thickness to evaluate transversus abdominis contractility at each deadlift phase using ultrasound imaging. Compared with the control group, the elite powerlifters showed a higher transversus abdominis contractile rate when the weight was at knee level (2.16 vs. 1.74; p = .04). There were no significant differences between the transversus abdominis contractile rates in both groups when the weight was at the floor and top level. This study reveals that deadlift performance may be influenced by transversus abdominis contractility (lumbopelvic stability)

Key words: athletic performance, core stability, lumbopelvic stability, transversus abdominis.


Ainscough-Potts, A. M., Morrissey, M. C., & Critchley, D. (2006). The response of the transverse abdominis and internal oblique muscles to different postures. Manual Therapy, 11(1), 54−60. doi: 10.1016/j.math.2005.03.007; PMid: 16009592
Bergmark, A. (1989). Stability of the lumbar spine. A study in mechanical engineering. Acta Orthopaedica Scandinavica – Supplementum, 230, 1−54. doi: 10.3109/17453678909154177; PMid: 2658468
Bunce, S. M., Moore, A. P., & Hough, A. D. (2002). M-mode ultrasound: A reliable measure of transversus abdominis thickness. Clinical Biomechanics, 17(4), 315−317. doi: 10.1016/S0268-0033(02)00011-6
Cook, G. (2001). Baseline sports-fitness testing. In B. Foran (Ed.), High Performance Sports Conditioning (pp. 19−48). Champaign, IL: Human Kinetics Inc.
Cresswell, A. G., Grundstrom, H., & Thorstensson, A. (1992). Observations on intra-abdominal pressure and patterns of abdominal intramuscular activity in man. Acta Physiologica Scandinavica, 144, 409−418.
doi: 10.1111/j.1748-1716.1992.tb09314.x
; PMid: 1534959
Cresswell, A. G., Oddsson, L., & Thorstensson, A. (1994). The influence of sudden perturbations on trunk muscle activity and intra-abdominal pressure while standing. Experimental Brain Research, 98(2), 336−341.
doi: 10.1007/BF00228421
Hales, M. E., Johnson, B. F., & Johnson, J. T. (2009). Kinematic analysis of the powerlifting style squat and the conventional deadlift during competition: is there a cross-over effect between lifts? Journal of Strength & Conditioning Research, 23(9), 2574−2580. doi: 10.1519/JSC.0b013e3181bc1d2a; PMid: 19910816
Hodges, P. W. (1994). Is there a role for transversus abdominis in lumbo-pelvic stability? Spine, 4(2), 74−86.
Hodges, P. W., & Richardson, C. A. (1996). Inefficient muscular stabilization of the lumbar spine associated with low back pain. A motor control evaluation of transversus abdominis. Spine, 21(22), 2640−2650.
doi: 10.1097/00007632-199611150-00014: PMid: 8961451
Hodges, P. W., & Richardson, C. A. (1997). Feedforward contraction of transversus abdominis is not influenced by the direction of arm movement. Experimental Brain Research, 114(2), 362−370. doi: 10.1007/PL00005644
Hodges, P. W., & Richardson, C. A. (1998). Delayed postural contraction of transversus abdominis in low back pain associated with movement of the lower limb. Journal of Spinal Disorders, 11(1), 46−56.
doi: 10.1097/00002517-199802000-00008
Hodges, P. W., Richardson, C. A., & Hasan, Z. (1997). Contraction of the abdominal muscles associated with movement of the lower limb. Physical Therapy, 77(2), 132−134. PMid: 9037214
Kanehisa, H., Ikegawa, S., & Fukunaga, T. (1994). Comparison of muscle cross-sectional area and strength between untrained women and men. European Journal of Applied Physiology and Occupational Physiology, 148−154.
doi: 10.1007/BF00244028; doi: 10.1007/BF00843736
Kibler, W. B., Press, J., & Sciasciam, A. (2006). The role of core stability in athletic function. Sports Medicine, 36(3), 189−198. doi: 10.2165/00007256-200636030-00001
Liemohn, W. P., Baumgartner, T. A., & Gagnon, L. H. (2005). Measuring core stability. J Strength Cond Res, 19(3), 583−586. doi: 10.1519/1533-4287(2005)19[583:MCS]2.0.CO;2;
doi: 10.1519/00124278-200508000-00016

Maughan, R. J., Watson, J. S., & Weir, J. (1984). Muscle strength and cross-sectional area in man: a comparison of strength-trained and untrained subjects. Br J Sports Med, 18(3), 149–157. doi: 10.1136/bjsm.18.3.149: PMid: 6487941; PMCid: PMC1859378
McGill, S. (2001). Lower back stability: from formal description to issues for performance and rehabilitation. Exercise and Sport Sciences Reviews, 29(1), 26−31. doi: 10.1097/00003677-200101000-00006
McGill S. (2002). Low back disorders. 2nd ed. Champaign, IL: Human Kinetics Inc.
McGill, S. (2010). Core training: evidence translating to better performance and injury prevention. Strength & Conditioning Journal, 32(3), 33−46. doi: 10.1519/SSC.0b013e3181df4521
McGuigan, M. R. M., & Wilson, B. D. (1996). Biomechanical analysis of the deadlift. Journal of Strength & Conditioning Research, 10(4), 250−255. doi: 10.1519/00124278-199611000-00008;
doi: 10.1519/1533-4287(1996)010<0250:BAOTD>2.3.CO;2
Miller, M. I., & Medeiros, J. M. (1987). Recruitment of internal oblique and transversus abdominis muscle during the eccentric phase of the curl-up exercise. Physical Therapy, 67(8), 1213−1217. PMid: 2956614
Misuri, G., Colagrande, S., & Gorini, M. (1997). In vivo ultrasound assessment of respiratory function of abdominal muscles in normal subjects. European Respiratory Journal, 10(12), 2861−2867.
doi: 10.1183/09031936.97.10122861
Oddsson, L. I. (1990). Control of voluntary trunk movements in man: mechanisms for postural equilibrium during standing. Acta Physiologica Scandinavica Supplementum, 595, 1−60. PMid: 2080712
Panjabi, M. M. (1992). The stabilizing system of the spine. Part 1. function, dysfunction, adaptation and enhancement. Journal of Spinal Disorders, 5(4), 383−389. doi: 10.1097/00002517-199212000-00001; PMid: 1490034
Parkhouse, K. L., & Ball, N. (2011). Influence of dynamic versus static core exercises on performance in field based fitness tests. Journal of Bodywork and Movement Therapies, 15(4), 517−524. PMid: 21943626
Rankin, G., & Stokes, M. (1998). Reliability of assessment tools in rehabilitation:an illustration of appropriate statistical analysis. Clinical Rehabilitation, 12(3), 187−199. doi: 10.1191/026921598672178340
Springer, B. A., & Gill, N. W. (2007). Use of rehabilitative ultrasound imaging to characterize abdominal muscle structure and function in lower extremity amputees. Journal of Orthopaedic & Sports Physical Therapy, 37(10), 635−643. doi: 10.2519/jospt.2007.2532; PMid: 17970411